Station Science Top News: March 7, 2025
Challenges to measuring space-induced brain changes
Researchers found that an upward shift in the brain during spaceflight makes it hard to distinguish different types of tissue, causing errors in determining changes in brain volume. Previous studies have interpreted these changes as evidence of adaptation to space. This finding suggests that unique methods are needed to analyze astronaut brain structure.
Wayfinding, a CSA (Canadian Space Agency) investigation, looked at how the brain adapts to space and readapts after return to normal gravity using a variety of assessments, including neuroimaging. The researchers propose that previous data could be reanalyzed based on the errors identified by this paper.
Catching micrometeoroids
An impact track made by a micrometeoroid on a panel outside the International Space Station contained iron and orthopyroxene crystals. This finding, along with previous studies, suggests that micrometeoroids containing these elements are abundant in low Earth orbit and more measurements are needed to determine their origins and potential for carrying life.
At least 90% of meteoroids at one astronomical unit or AU (93 million miles or the distance between Earth and the Sun) do not reach Earth’s surface, so investigating those in low Earth orbit is key to understanding their nature. The JAXA (Japan Aerospace Exploration Agency) Tanpopo experiment placed blocks of a special gel outside the station to capture solid microparticles to test the theory that they could transport life among celestial bodies. Most meteoroids at one AU may have originated from Jupiter family comets.

Comments
Post a Comment